
All that begins . . .

peace be upon you

Raspberry Pi 3 for Scientific Computing
An Introduction

Abu Hasan ‘ABDULLAH

February 2019

RPi3 for Scientific Computing
RPi and Arduino Based Data Logger: Speed Sensor

1 Introduction
2 Software

Standard Tools
Additional Tools

3 Programming on the Raspberry Pi
Writing & Running Octave/Matlab Codes
Writing & Running GNU C Codes
Writing & Running GNU Fortran Codes
Writing & Running Python

4 Raspberry Pi based Data Loggers
PIR Motion Sensor with Surveillance Camera
PIR Motion Sensor with Alarm
Multiple Temperature Sensors
Capturing 6DOF motion with MPU6050 IMU
Altitude, Temperature & Pressure Sensor
Humidity & Temperature Sensor
Sense HAT: “Jack of many trades”
Soil Moisture Sensor for Smart Gardening
Soil Moisture Sensor for Smart Irrigation Project
Gas Sensors
Force Sensitive Resistor

5 “Raspberry Pi + Arduino” based
Data Loggers

Handshaking the Arduino
Programming Arduino: Integrated Development
Environment
Force-Sensing Resistor
Load Cell
Speed Sensor

abu.hasan.abdullah c b n a 2019 Raspberry Pi 3 for Scientific Computing February 2019 1 / 64

Introduction

For scientific computing environment on RPi3 B+, Raspbian OS is recommended for
being relatively fast. It comes with a healthy collection of tools, especially tools for
developing software, allowing user to straight away jump into it after installation. You
will need:

1 Micro SD card preinstalled with Raspbian OS and case
2 Micro USB power cable: RPi3 requires a 2.5A power supply
3 HDMI to VGA converter or HDMI cable

(a) RPi3 B+ (b) Micro SD (c) Case (d) Power adapter (e) Video converter

4 Monitor or TV: If your monitor is DVI or VGA, you will need an adapter.
5 USB mouse & keyboard

abu.hasan.abdullah c b n a 2019 Raspberry Pi 3 for Scientific Computing February 2019 2 / 64

Software
Standard Tools

Raspbian OS comes standard with the following packages:

Programming
1 BlueJ Java IDE
2 Geany Programmer’s Editor
3 Greenfoot Jave IDE
4 Mathematica
5 Node-RED
6 Python 3 (IDLE)
7 Scratch
8 Sense HAT Emulator
9 Sonic Pi

10 Thonny Python IDE
11 Wolfram

Office Tools
1 LibreOffice

Internet Tools
1 Chromium
2 Claws Mail
3 VNC Viewer

Accessories
1 Archiver
2 Calculator
3 File Manager
4 Image Viewer
5 PDF Viewer
6 SD Card Copier
7 Task Manager
8 Terminal
9 Text Editor

abu.hasan.abdullah c b n a 2019 Raspberry Pi 3 for Scientific Computing February 2019 3 / 64

Software
Additional Tools

On top of those standard desktop computing tools, we added three more categories of
software popular among users within the scientific & engineering communities.

CAE & Scientific
1 FreeCAD, Blender, LibreCAD & KiCAD
2 gmsh, Netgen & MeshLab
3 GNU Octave, Maxima
4 g3data, GNUplot & SciDAVis
5 R & GNU PSPP

Programming & SDK
1 Arduino
2 GNU SDK (C, C++, Fortran), OpenMPI, f2c, fort77, ftnchek
3 Python for Math/Science/Engineering: SciPy, NumPy, Matplotlib, Pandas
4 Python programming utils: IDLE 3, ipython, Spyder
5 Tcl/Tk/Tix, Qt4 Designer, FLTK, VTK, wxGTK, CERNLIB, PETSc
6 CodeBlock, CodeLite, CMake, gedit, Meld, rdiff, xxdiff

TEX/LATEX-based typesetting tools
1 Full TEXLive installation
2 TEXworks
3 JabRef

abu.hasan.abdullah c b n a 2019 Raspberry Pi 3 for Scientific Computing February 2019 4 / 64

Programming on the Raspberry Pi
Hands-on Session

Writing & Running
Octave/Matlab

Codes

abu.hasan.abdullah c b n a 2019 Raspberry Pi 3 for Scientific Computing February 2019 5 / 64

Programming on the Raspberry Pi
Interactive Octave

Matlab does NOT have a native version running on Raspberry Pi but GNU Octave is the
best open-source alternative to Matlab.

To launch Octave with its GUI (where you can enter Octave/Matlab commands just
like the command line) enter:

$ octave --force-gui

abu.hasan.abdullah c b n a 2019 Raspberry Pi 3 for Scientific Computing February 2019 6 / 64

Programming on the Raspberry Pi
How to Write and Run a Program in Octave

If you want to perform Octave-based analytics in a batch processing environment, you
need to be able to run Octave scripts from the command line—the process consists of
three steps:

1 Writing an Octave program
2 Running an Octave program
3 Making an Octave program executable

To demonstrate how to create an Octave program, and run it on the Raspberry Pi, we’ll
make a simple program that will print “Salaam, World!” in the terminal.

abu.hasan.abdullah c b n a 2019 Raspberry Pi 3 for Scientific Computing February 2019 7 / 64

Programming on the Raspberry Pi
How to Write and Run a Program in Octave

1 Writing an Octave program
To start, open the nano text editor and create a new file with a “.m” extension by entering
this at the command prompt:

nano salaam.m

This file is where you’ll write the Octave code. You can write the code in any text editor, just make sure to
give the file a .m extension.

Now, enter this code into nano:

#!/usr/bin/octave -qf

S = ’Salaam, World!’;
disp(S)

After entering the code, enter Ctrl-X and Y to save and exit nano.

2 Running an Octave program

To run the program without making it executable, navigate to the location where you saved
your file, and enter this at the command prompt:

octave-cli salaam.m

abu.hasan.abdullah c b n a 2019 Raspberry Pi 3 for Scientific Computing February 2019 8 / 64

Programming on the Raspberry Pi
How to Write and Run a Program in Octave

3 Making a Octave program executable

Making a Octave program executable allows you to run the program without entering
octave-cli before the file name. You can make a file executable by entering this at the
command prompt:

chmod +x salaam.m

Now to run the program, all you need to enter is:

./salaam.m

abu.hasan.abdullah c b n a 2019 Raspberry Pi 3 for Scientific Computing February 2019 9 / 64

Programming on the Raspberry Pi
Hands-on Session

Writing & Running
GNU C
Codes

abu.hasan.abdullah c b n a 2019 Raspberry Pi 3 for Scientific Computing February 2019 10 / 64

Programming on the Raspberry Pi
How to Write and Run a Program in C

To demonstrate how to create a C program, compile it, and run it on the Raspberry Pi,
we’ll make a simple program that will print “Salaam, World!” in the terminal.
The coding process in C consists of four steps:

1 Creating the C source file
2 Compiling the C source file into a program
3 Making the program executable
4 Executing the program

abu.hasan.abdullah c b n a 2019 Raspberry Pi 3 for Scientific Computing February 2019 11 / 64

Programming on the Raspberry Pi
How to Write and Run a Program in C

1 Creating the C source file
To start, open the nano text editor and create a new file with a “.c” extension by entering
this at the command prompt:

nano salaam.c

This file is where you’ll write the C code. You can write the code in any text editor, just make sure to give
the file a .c extension.

Now, enter this code into nano text editor:

#include <stdio.h>

int main()
{

printf("Salaam, World! \n");
return 0;

}

After entering the code, enter Ctrl-X and Y to save and exit nano.

abu.hasan.abdullah c b n a 2019 Raspberry Pi 3 for Scientific Computing February 2019 12 / 64

Programming on the Raspberry Pi
How to Write and Run a Program in C

2 Compiling the C source file into a program

Code written in C will need to be compiled before it can be run on a computer. Compiling is
the process of converting the code you write into machine readable instructions that can be
understood by the computer’s processor.

When you compile your source file, a new compiled file gets created. For example, entering
the command below will compile salaam.c into a new file called mysalaam:

gcc salaam.c -o mysalaam

3 Making the program executable
Now we need to make the compiled file executable. To do that, we just need to change the
file permissions. Enter this at the command prompt:

chmod +x mysalaam

4 Executing the program
Now all we need to do to run the compiled, executable, C program is enter this at the
command prompt:

./mysalaam

abu.hasan.abdullah c b n a 2019 Raspberry Pi 3 for Scientific Computing February 2019 13 / 64

Programming on the Raspberry Pi
Hands-on Session

Writing & Running
GNU Fortran

Codes

abu.hasan.abdullah c b n a 2019 Raspberry Pi 3 for Scientific Computing February 2019 14 / 64

Programming on the Raspberry Pi
How to Write and Run a Program in Fortran

We will follow steps we took earlier to develop a program using the C programming
language. We’ll make a simple program that will print “Salaam, World!” in the
terminal.
The coding process in Fortran also consists of four steps:

1 Creating the Fortran source file
2 Compiling the Fortran source file into a program
3 Making the program executable
4 Executing the program

abu.hasan.abdullah c b n a 2019 Raspberry Pi 3 for Scientific Computing February 2019 15 / 64

Programming on the Raspberry Pi
How to Write and Run a Program in Fortran

1 Creating the Fortran source file
To start, open the nano text editor and create a new file with a “.f90” extension by
entering this at the command prompt:

nano salaam.f90

This file is where you’ll write the Fortran code. You can write the code in any text editor, just make sure
to give the file a .f90 extension.

Now, enter this code into nano text editor:

program salaam
print *, "Salaam, World!"

end program salaam

Fortran is case insensitive, one could just as easily write the first salaam.f90 program as:

Program Salaam
Print *, "Salaam, World!"

End Program Salaam

After entering the code, enter Ctrl-X and Y to save and exit nano.

abu.hasan.abdullah c b n a 2019 Raspberry Pi 3 for Scientific Computing February 2019 16 / 64

Programming on the Raspberry Pi
How to Write and Run a Program in Fortran

2 Compiling the Fortran source file into a program

As in C, code written in Fortran will need to be compiled before it can be run on a computer.
Compiling is the process of converting the code you write into machine readable
instructions that can be understood by the computer’s processor.

When you compile your source file, a new compiled file gets created. For example, entering
the command below will compile salaam.f90 into a new file called mysalaam:

gfortran salaam.f90 -o mysalaam

3 Making the program executable
Now we need to make the compiled file executable. To do that, we just need to change the
file permissions. Enter this at the command prompt:

chmod +x mysalaam

4 Executing the program
Now all we need to do to run the compiled, executable, Fortran program is enter this at
the command prompt:

./mysalaam

abu.hasan.abdullah c b n a 2019 Raspberry Pi 3 for Scientific Computing February 2019 17 / 64

Programming on the Raspberry Pi
Hands-on Session

Writing & Running
Python
Codes

abu.hasan.abdullah c b n a 2019 Raspberry Pi 3 for Scientific Computing February 2019 18 / 64

Programming on the Raspberry Pi
Interactive Python

Unlike C programs, Python programs don’t need to be compiled before running them.
However, you will need to install the Python interpreter on your computer to run them.
The Python interpreter is a program that reads Python files and executes the code.

A Read-Eval-Print Loop (REPL) is a simple, interactive computer programming
environment that takes user’s inputs, evaluates them, and returns the result to the user.

To access the Python REPL (where you can enter Python commands just like the
command line) enter python or python3 depending on which version you want to
use:

python

or

python3

abu.hasan.abdullah c b n a 2019 Raspberry Pi 3 for Scientific Computing February 2019 19 / 64

Programming on the Raspberry Pi
How to Write and Run a Program in Python

To demonstrate how to create a Python program, and run it on the Raspberry Pi, we’ll
make a simple program that will print “Salaam, World!” in the terminal.
The coding process in Python consists of three steps:

1 Writing a Python program
2 Running a Python program
3 Making a Python program executable

abu.hasan.abdullah c b n a 2019 Raspberry Pi 3 for Scientific Computing February 2019 20 / 64

Programming on the Raspberry Pi
How to Write and Run a Program in Python

1 Writing a Python program
To start, open the nano text editor and create a new file with a “.py” extension by entering
this at the command prompt:

nano salaam.py

This file is where you’ll write the Python code. You can write the code in any text editor, just make sure to
give the file a .py extension.

Now, enter this code into nano:

#!/usr/bin/python

print "Salaam, World!"

After entering the code, enter Ctrl-X and Y to save and exit nano.

2 Running a Python program

To run the program without making it executable, navigate to the location where you saved
your file, and enter this at the command prompt:

python salaam.py

abu.hasan.abdullah c b n a 2019 Raspberry Pi 3 for Scientific Computing February 2019 21 / 64

Programming on the Raspberry Pi
How to Write and Run a Program in Python

3 Making a Python program executable

Making a Python program executable allows you to run the program without entering
python before the file name. You can make a file executable by entering this at the
command prompt:

chmod +x salaam.py

Now to run the program, all you need to enter is:

./salaam.py

abu.hasan.abdullah c b n a 2019 Raspberry Pi 3 for Scientific Computing February 2019 22 / 64

Raspberry Pi
based

Data Loggers

abu.hasan.abdullah c b n a 2019 Raspberry Pi 3 for Scientific Computing February 2019 23 / 64

Raspberry Pi based Data Loggers
GPIO Pins

Figure 1: GPIO pinout for Raspberry Pi 3 and Zero.

https://learn.sparkfun.com/tutorials/raspberry-gpio/gpio-pinout

abu.hasan.abdullah c b n a 2019 Raspberry Pi 3 for Scientific Computing February 2019 24 / 64

Raspberry Pi based Data Loggers
GPIO Pins

Figure 2: GPIO pinout for Raspberry Pi 2.

https://learn.sparkfun.com/tutorials/raspberry-gpio/gpio-pinout

abu.hasan.abdullah c b n a 2019 Raspberry Pi 3 for Scientific Computing February 2019 25 / 64

Raspberry Pi based Data Loggers
PIR Motion Sensor with Surveillance Camera

Figure 3: PIR motion sensor with surveillance camera.

https://edi.wang/post/2016/8/11/raspi-azure-camera

abu.hasan.abdullah c b n a 2019 Raspberry Pi 3 for Scientific Computing February 2019 26 / 64

Raspberry Pi based Data Loggers
PIR Motion Sensor with Surveillance Camera

Sample code

#!/usr/bin/python
#
import RPi.GPIO as GPIO
import time

from picamera import PiCamera

pirPin = 7

GPIO.setmode(GPIO.BOARD)
GPIO.setup(pirPin, GPIO.IN)

camera = PiCamera()
counter = 1

while True:
if GPIO.input(pirPin):
print "Motion detected!"

try:
timestr = time.strftime("%Y%m%d-%H%M%S")
print timestr
camera.start_preview()
time.sleep(1)
camera.capture(’/home/pi/media/0-pix/Picture-%s.jpg’ % timestr)
counter = counter + 1
camera.stop_preview()

except:
camera.stop_preview()

time.sleep(2)

abu.hasan.abdullah c b n a 2019 Raspberry Pi 3 for Scientific Computing February 2019 27 / 64

Raspberry Pi based Data Loggers
PIR Motion Sensor with Alarm

Figure 4: PIR motion sensor with alarm.

https://www.electronicshub.org/pir-motion-sensor-using-raspberry-pi/

abu.hasan.abdullah c b n a 2019 Raspberry Pi 3 for Scientific Computing February 2019 28 / 64

Raspberry Pi based Data Loggers
PIR Motion Sensor with Alarm

Sample code

import RPi.GPIO as GPIO
import time

sensor = 16
buzzer = 18

GPIO.setmode(GPIO.BOARD)
GPIO.setup(sensor,GPIO.IN)
GPIO.setup(buzzer,GPIO.OUT)

GPIO.output(buzzer,False)
print "Initialzing PIR Sensor......"
time.sleep(12)
print "PIR Ready..."
print " "

try:
while True:

if GPIO.input(sensor):
GPIO.output(buzzer,True)
print "Motion Detected"
while GPIO.input(sensor):

time.sleep(0.2)
else:

GPIO.output(buzzer,False)

except KeyboardInterrupt:
GPIO.cleanup()

abu.hasan.abdullah c b n a 2019 Raspberry Pi 3 for Scientific Computing February 2019 29 / 64

Raspberry Pi based Data Loggers
Multiple Temperature Sensors

(a) Sensor (b) Wiring

Figure 5: Connecting multiple DS18B20 temperature sensors in series.

http://www.reuk.co.uk/wordpress/raspberry-pi/connect-multiple-temperature-sensors-with-raspberry-pi/
http://www.reuk.co.uk/wordpress/raspberry-pi/raspberry-pi-temperature-logger-with-xively/

abu.hasan.abdullah c b n a 2019 Raspberry Pi 3 for Scientific Computing February 2019 30 / 64

Raspberry Pi based Data Loggers
Multiple Temperature Sensors

(a) DAQ for earth cooler (b) Instrumenting the earth cooler

Figure 6: Temperature monitoring inside an earth cooler.

FARAH ATIQAH BINTI IBRAHIM, A. H. ABDULLAH, N. KAMARUZAMAN (2018): Development of a Simple Data Acquisition System for Monitoring Performance of an
Earth Cooler, Faculty of Mechanical Engineering, UTM.

abu.hasan.abdullah c b n a 2019 Raspberry Pi 3 for Scientific Computing February 2019 31 / 64

Raspberry Pi based Data Loggers
Multiple Temperature Sensors

Sample code
#!/usr/bin/python
#
import os
import glob
import time
from datetime import datetime
import csv
#import onewire

########################
Set up all variables
########################

#allows use of the sensors
os.system(’modprobe w1-gpio’)
os.system(’modprobe w1-therm’)
base_dir = ’/sys/bus/w1/devices/’

#name the CSV file for the data log
out_filename = ’/home/pi/ugp/p08/temperatures.csv’

#initialize variables for counting hot readings
i1 = 0
i2 = 0
i3 = 0
i4 = 0
i5 = 0
i6 = 0
i7 = 0

#insert device serial numbers here
sn1 = ’28-0217b064fdff’
sn2 = ’28-0217b066ddff’
sn3 = ’28-0217b07248ff’
sn4 = ’28-0217b21564ff’
sn5 = ’28-0117b10415ff’
sn6 = ’28-0217b2877fff’
sn7 = ’28-0117b0418cff’

#initialize all of the directories for the sensors
device_file1 = glob.glob(base_dir + sn1)[0] + ’/w1_slave’
device_file2 = glob.glob(base_dir + sn2)[0] + ’/w1_slave’
device_file3 = glob.glob(base_dir + sn3)[0] + ’/w1_slave’
device_file4 = glob.glob(base_dir + sn4)[0] + ’/w1_slave’
device_file5 = glob.glob(base_dir + sn5)[0] + ’/w1_slave’
device_file6 = glob.glob(base_dir + sn6)[0] + ’/w1_slave’
device_file7 = glob.glob(base_dir + sn7)[0] + ’/w1_slave’

abu.hasan.abdullah c b n a 2019 Raspberry Pi 3 for Scientific Computing February 2019 32 / 64

Raspberry Pi based Data Loggers
Multiple Temperature Sensors

Sample code (continued)
################################
Routines to read each sensor
################################
#Read Sensor 1
def read_temp_raw1():

f = open(device_file1, ’r’)
lines1 = f.readlines()
f.close()
return lines1

def read_temp1():
lines1 = read_temp_raw1()
while lines1[0].strip()[-3:] != ’YES’:

time.sleep(0.2)
lines1 = read_temp_raw1()

equals_pos = lines1[1].find(’t=’)
if equals_pos != -1:

temp_string1 = lines1[1][equals_pos+2:]
temp_c1 = float(temp_string1) / 1000.0
return temp_c1

#Read Sensor 2
def read_temp_raw2():

f = open(device_file2, ’r’)
lines2 = f.readlines()
f.close()
return lines2

def read_temp2():
lines2 = read_temp_raw2()
while lines2[0].strip()[-3:] != ’YES’:

time.sleep(0.2)
lines2 = read_temp_raw2()

equals_pos = lines2[1].find(’t=’)
if equals_pos != -1:

temp_string2 = lines2[1][equals_pos+2:]
temp_c2 = float(temp_string2) / 1000.0
return temp_c2

abu.hasan.abdullah c b n a 2019 Raspberry Pi 3 for Scientific Computing February 2019 33 / 64

Raspberry Pi based Data Loggers
Multiple Temperature Sensors

Sample code (continued)
#Read Sensor 3
def read_temp_raw3():

f = open(device_file3, ’r’)
lines3 = f.readlines()
f.close()
return lines3

def read_temp3():
lines3 = read_temp_raw3()
while lines3[0].strip()[-3:] != ’YES’:

time.sleep(0.2)
lines3 = read_temp_raw3()

equals_pos = lines3[1].find(’t=’)
if equals_pos != -1:

temp_string3 = lines3[1][equals_pos+2:]
temp_c3 = float(temp_string3) / 1000.0
return temp_c3

#Read Sensor 4
def read_temp_raw4():

f = open(device_file4, ’r’)
lines4 = f.readlines()
f.close()
return lines4

def read_temp4():
lines4 = read_temp_raw4()
while lines4[0].strip()[-3:] != ’YES’:

time.sleep(0.2)
lines4 = read_temp_raw4()

equals_pos = lines4[1].find(’t=’)
if equals_pos != -1:

temp_string4 = lines4[1][equals_pos+2:]
temp_c4 = float(temp_string4) / 1000.0
return temp_c4

abu.hasan.abdullah c b n a 2019 Raspberry Pi 3 for Scientific Computing February 2019 34 / 64

Raspberry Pi based Data Loggers
Multiple Temperature Sensors

Sample code (continued)
#Read Sensor 5
def read_temp_raw5():

f = open(device_file5, ’r’)
lines5 = f.readlines()
f.close()
return lines5

def read_temp5():
lines5 = read_temp_raw5()
while lines5[0].strip()[-3:] != ’YES’:

time.sleep(0.2)
lines5 = read_temp_raw5()

equals_pos = lines5[1].find(’t=’)
if equals_pos != -1:

temp_string5 = lines5[1][equals_pos+2:]
temp_c5 = float(temp_string5) / 1000.0
return temp_c5

#Read Sensor 6
def read_temp_raw6():

f = open(device_file6, ’r’)
lines6 = f.readlines()
f.close()
return lines6

def read_temp6():
lines6 = read_temp_raw6()
while lines6[0].strip()[-3:] != ’YES’:

time.sleep(0.2)
lines6 = read_temp_raw6()

equals_pos = lines6[1].find(’t=’)
if equals_pos != -1:

temp_string6 = lines6[1][equals_pos+2:]
temp_c6 = float(temp_string6) / 1000.0
return temp_c6

abu.hasan.abdullah c b n a 2019 Raspberry Pi 3 for Scientific Computing February 2019 35 / 64

Raspberry Pi based Data Loggers
Multiple Temperature Sensors

Sample code (continued)
#Read Sensor 7
def read_temp_raw7():

f = open(device_file7, ’r’)
lines7 = f.readlines()
f.close()
return lines7

def read_temp7():
lines7 = read_temp_raw7()
while lines7[0].strip()[-3:] != ’YES’:

time.sleep(0.2)
lines7 = read_temp_raw7()

equals_pos = lines7[1].find(’t=’)
if equals_pos != -1:

temp_string7 = lines7[1][equals_pos+2:]
temp_c7 = float(temp_string7) / 1000.0
return temp_c7

#############
Main Loop
#############

while True:

currenttime = time.ctime()
temp1 = read_temp1()
temp2 = read_temp2()
temp3 = read_temp3()
temp4 = read_temp4()
temp5 = read_temp5()
temp6 = read_temp6()
temp7 = read_temp7()

with open(out_filename, ’a’) as f:
writer = csv.writer(f)
writer.writerow((

currenttime,

temp1,
temp2,
temp3,

temp4,
temp5,
temp6,
temp7,

))
open(out_filename).close()

time.sleep(1) #taking reading once per two minute

abu.hasan.abdullah c b n a 2019 Raspberry Pi 3 for Scientific Computing February 2019 36 / 64

Raspberry Pi based Data Loggers
Multiple Temperature Sensors

Figure 7: Future expansion for the temperature monitoring system of the earth cooler.

FARAH ATIQAH BINTI IBRAHIM, A. H. ABDULLAH, N. KAMARUZAMAN (2018): Development of a Simple Data Acquisition System for Monitoring Performance of an
Earth Cooler, Faculty of Mechanical Engineering, UTM.

abu.hasan.abdullah c b n a 2019 Raspberry Pi 3 for Scientific Computing February 2019 37 / 64

Raspberry Pi based Data Loggers
Capturing 6DOF motion with MPU6050 IMU

(a) Ship motion (b) Aircraft motion

Figure 8: Real world 6DOF motions.

http://johnclarkeonline.com/2011/12/18/six-degrees-of-freedom/

abu.hasan.abdullah c b n a 2019 Raspberry Pi 3 for Scientific Computing February 2019 38 / 64

Raspberry Pi based Data Loggers
Capturing 6DOF motion with MPU6050 IMU

(a) Sensor (b) Wiring

Figure 9: Data acquisition with RPi: 6DOF Motion.

https://tutorials-raspberrypi.com/measuring-rotation-and-acceleration-raspberry-pi/
http://www.electronicwings.com/raspberry-pi/mpu6050-accelerometergyroscope-interfacing-with-raspberry-pi

abu.hasan.abdullah c b n a 2019 Raspberry Pi 3 for Scientific Computing February 2019 39 / 64

Raspberry Pi based Data Loggers
Capturing 6DOF motion with MPU6050 IMU

Sample code

’’’
Read Gyro and Accelerometer by Interfacing Raspberry Pi with MPU6050 using Python
http://www.electronicwings.com

’’’
import smbus #import SMBus module of I2C
from time import sleep #import

#some MPU6050 Registers and their Address
PWR_MGMT_1 = 0x6B
SMPLRT_DIV = 0x19
CONFIG = 0x1A
GYRO_CONFIG = 0x1B
INT_ENABLE = 0x38
ACCEL_XOUT_H = 0x3B
ACCEL_YOUT_H = 0x3D
ACCEL_ZOUT_H = 0x3F
GYRO_XOUT_H = 0x43
GYRO_YOUT_H = 0x45
GYRO_ZOUT_H = 0x47

abu.hasan.abdullah c b n a 2019 Raspberry Pi 3 for Scientific Computing February 2019 40 / 64

Raspberry Pi based Data Loggers
Capturing 6DOF motion with MPU6050 IMU

Sample code (continued)

def MPU_Init():
#write to sample rate register
bus.write_byte_data(Device_Address, SMPLRT_DIV, 7)

#Write to power management register
bus.write_byte_data(Device_Address, PWR_MGMT_1, 1)

#Write to Configuration register
bus.write_byte_data(Device_Address, CONFIG, 0)

#Write to Gyro configuration register
bus.write_byte_data(Device_Address, GYRO_CONFIG, 24)

#Write to interrupt enable register
bus.write_byte_data(Device_Address, INT_ENABLE, 1)

def read_raw_data(addr):
#Accelero and Gyro value are 16-bit

high = bus.read_byte_data(Device_Address, addr)
low = bus.read_byte_data(Device_Address, addr+1)

#concatenate higher and lower value
value = ((high << 8) | low)

#to get signed value from mpu6050
if(value > 32768):

value = value - 65536
return value

abu.hasan.abdullah c b n a 2019 Raspberry Pi 3 for Scientific Computing February 2019 41 / 64

Raspberry Pi based Data Loggers
Capturing 6DOF motion with MPU6050 IMU

Sample code (continued)

bus = smbus.SMBus(1) # or bus = smbus.SMBus(0) for older version boards
Device_Address = 0x68 # MPU6050 device address

MPU_Init()

print (" Reading Data of Gyroscope and Accelerometer")

while True:

#Read Accelerometer raw value
acc_x = read_raw_data(ACCEL_XOUT_H)
acc_y = read_raw_data(ACCEL_YOUT_H)
acc_z = read_raw_data(ACCEL_ZOUT_H)

#Read Gyroscope raw value
gyro_x = read_raw_data(GYRO_XOUT_H)
gyro_y = read_raw_data(GYRO_YOUT_H)
gyro_z = read_raw_data(GYRO_ZOUT_H)

#Full scale range +/- 250 degree/C as per sensitivity scale factor
Ax = acc_x/16384.0
Ay = acc_y/16384.0
Az = acc_z/16384.0

Gx = gyro_x/131.0
Gy = gyro_y/131.0
Gz = gyro_z/131.0

print ("Gx=%.2f" %Gx, "\tGy=%.2f" %Gy, "\tGz=%.2f" %Gz, \
"\tAx=%.2f g" %Ax, "\tAy=%.2f g" %Ay, "\tAz=%.2f g" %Az)

sleep(1)

abu.hasan.abdullah c b n a 2019 Raspberry Pi 3 for Scientific Computing February 2019 42 / 64

Raspberry Pi based Data Loggers
Altitude, Temperature & Pressure Sensor

(a) Sensor (b) Wiring

Figure 10: BMP180 altitude, temperature & pressure sensor.

https://thepihut.com/blogs/raspberry-pi-tutorials/18025084-sensors-pressure-temperature-and-altitude-with-the-bmp180

abu.hasan.abdullah c b n a 2019 Raspberry Pi 3 for Scientific Computing February 2019 43 / 64

Raspberry Pi based Data Loggers
Altitude, Temperature & Pressure Sensor

Sample code

#!/usr/bin/python

import Adafruit_BMP.BMP085 as BMP085 # Imports the BMP library

Create an ’object’ containing the BMP180 data
sensor = BMP085.BMP085()

print ’Temp = {0:0.2f} *C’.format(sensor.read_temperature()) # Temperature in Celcius
print ’Pressure = {0:0.2f} Pa’.format(sensor.read_pressure()) # The local pressure
print ’Altitude = {0:0.2f} m’.format(sensor.read_altitude()) # The current altitude
print ’Sealevel Pressure = {0:0.2f} Pa’.format(sensor.read_sealevel_pressure()) # The sea-level pressure

abu.hasan.abdullah c b n a 2019 Raspberry Pi 3 for Scientific Computing February 2019 44 / 64

Raspberry Pi based Data Loggers
Humidity & Temperature Sensor

(a) Sensor (b) Wiring

Figure 11: DHT11 humidity & temperature Sensor.

http://www.circuitbasics.com/how-to-set-up-the-dht11-humidity-sensor-on-the-raspberry-pi/

abu.hasan.abdullah c b n a 2019 Raspberry Pi 3 for Scientific Computing February 2019 45 / 64

Raspberry Pi based Data Loggers
Humidity & Temperature Sensor

Sample code

#!/usr/bin/python
import sys
import Adafruit_DHT

while True:
humidity, temperature = Adafruit_DHT.read_retry(11, 4)
print ’Temp: {0:0.1f} C Humidity: {1:0.1f} %’.format(temperature, humidity)

abu.hasan.abdullah c b n a 2019 Raspberry Pi 3 for Scientific Computing February 2019 46 / 64

Raspberry Pi based Data Loggers
Sense HAT: “Jack of many trades”

Sense HAT is “Jack of many trades” and comes with:

a magnetometer

a gyroscope (sensing pitch, roll, and yaw) and an accelerometer,

sensors for temperature, humidity, and barometric pressure

a joystick and an 8×8 LED matrix

(a) Sense HAT (b) Sense HAT & RPi (c) Piggyback

Figure 12: Sense HAT.

https://www.raspberrypi.org/products/sense-hat/

abu.hasan.abdullah c b n a 2019 Raspberry Pi 3 for Scientific Computing February 2019 47 / 64

Raspberry Pi based Data Loggers
Soil Moisture Sensor for Smart Gardening

Note: This data logger needs relay.

Figure 13: Smart gardening using 5V 10A 2 channel relay to power the water pump.

https://www.hackster.io/mtechkiran/smart-home-gardening-system-using-raspberry-pi-1570a7

abu.hasan.abdullah c b n a 2019 Raspberry Pi 3 for Scientific Computing February 2019 48 / 64

Raspberry Pi based Data Loggers
Soil Moisture Sensor for Smart Irrigation Project

Note: This data logger needs ADC (MCP3204).

Figure 14: Smart irrigation project making use of ADC and solenoid valve.

http://www.embeddedstudy.com/2017/09/iot-based-smart-irrigation-project-on.html

abu.hasan.abdullah c b n a 2019 Raspberry Pi 3 for Scientific Computing February 2019 49 / 64

Raspberry Pi based Data Loggers
Gas Sensors

Note: This data logger needs ADC (MCP3008).

(a) Sensor (b) Wiring

Figure 15: MQ-2 (LPG, methane, butane, smoke) gas sensor.

https://tutorials-raspberrypi.com/configure-and-read-out-the-raspberry-pi-gas-sensor-mq-x/
Source codes: git clone https://github.com/tutRPi/Raspberry-Pi-Gas-Sensor-MQ

abu.hasan.abdullah c b n a 2019 Raspberry Pi 3 for Scientific Computing February 2019 50 / 64

Raspberry Pi based Data Loggers
Gas Sensors

Table 1: Gas sensors

Sensor Gas(es)

MQ-2 Methane, Butane, LPG, smoke
MQ-3 Alcohol, Ethanol, smoke
MQ-4 Methane, CNG Gas
MQ-5 Natural gas, LPG
MQ-6 LPG, butane gas
MQ-7 Carbon Monoxide
MQ-8 Hydrogen Gas
MQ-9 Carbon Monoxide, flammable gasses
MQ-131 Ozone
MQ-135 Benzene, Alcohol, smoke
MQ-136 Hydrogen Sulfide gas
MQ-137 Ammonia
MQ-138 Benzene, Toluene, Alcohol, Acetone, Propane, Formaldehyde gas
MQ-214 Methane, Natural gas
MQ-216 Natural gas, Coal gas
MQ-303A Alcohol, Ethanol, smoke
MQ-306A LPG, butane gas
MQ-307A Carbon Monoxide

abu.hasan.abdullah c b n a 2019 Raspberry Pi 3 for Scientific Computing February 2019 51 / 64

Raspberry Pi based Data Loggers
Force Sensitive Resistor

Note: This data logger needs ADC (MCP3008).

(a) Sensor (b) Wiring

Figure 16: Connecting the force sensitive resistor and ADC to RPi’s GPIO

http://arduinolearning.com/code/force-sensitive-resistor-example.php
http://acaird.github.io/computers/2015/01/07/raspberry-pi-fsr

abu.hasan.abdullah c b n a 2019 Raspberry Pi 3 for Scientific Computing February 2019 52 / 64

“Raspberry Pi + Arduino”
based

Data Loggers

abu.hasan.abdullah c b n a 2019 Raspberry Pi 3 for Scientific Computing February 2019 53 / 64

“Raspberry Pi + Arduino” based Data Loggers
RPi + Arduino: A Marriage of Convenience

abu.hasan.abdullah c b n a 2019 Raspberry Pi 3 for Scientific Computing February 2019 54 / 64

“Raspberry Pi + Arduino” based Data Loggers
Handshaking the Arduino

(a) Arduino + PC (b) Arduino + RPi

Figure 17: Connecting Arduino microcontroller using USB ports.

http://www.hackerscapes.com/2014/11/how-to-save-data-from-arduino-to-a-csv-file-using-processing/

abu.hasan.abdullah c b n a 2019 Raspberry Pi 3 for Scientific Computing February 2019 55 / 64

“Raspberry Pi + Arduino” based Data Loggers
Handshaking the Arduino

Android Things: (codenamed Brillo) is an Android-based embedded operating system
platform by Google, announced at Google I/O 2015. It is aimed to be used with
low-power and memory constrained Internet of Things (IoT) devices, which are
usually built from different MCU platforms.

Figure 18: Connecting RPi3 with Android Things to Arduino.

https://en.wikipedia.org/wiki/Android_Things
https://medium.com/@bastermark3/connecting-raspberry-pi-3-with-android-things-to-arduino-51d202006379

abu.hasan.abdullah c b n a 2019 Raspberry Pi 3 for Scientific Computing February 2019 56 / 64

“Raspberry Pi + Arduino” based Data Loggers
Handshaking the Arduino

I2C: is a useful bus that allows data exchange between microcontrollers and
peripherals with a minimum of wiring.

Figure 19: Use a Raspberry as Master for I2C Bus and Arduino Uno as Slave (127 slaves capability).

https://learn.sparkfun.com/tutorials/raspberry-pi-spi-and-i2c-tutorial
http://fritzing.org/projects/i2c-raspberrypi2-master-to-arduino-slave

abu.hasan.abdullah c b n a 2019 Raspberry Pi 3 for Scientific Computing February 2019 57 / 64

“Raspberry Pi + Arduino” based Data Loggers
Programming Arduino: Integrated Development Environment

Figure 20: Arduino IDE.

https://www.arduino.cc/en/Main/Software?

abu.hasan.abdullah c b n a 2019 Raspberry Pi 3 for Scientific Computing February 2019 58 / 64

“Raspberry Pi + Arduino” based Data Loggers
Force-Sensing Resistor

(a) Sensor (b) Wiring

Figure 21: Using Arduino to read force-sensing resistors.

http://arduinolearning.com/code/force-sensitive-resistor-example.php
https://itp.nyu.edu/archive/physcomp-spring2014/Labs/AnalogIn

abu.hasan.abdullah c b n a 2019 Raspberry Pi 3 for Scientific Computing February 2019 59 / 64

“Raspberry Pi + Arduino” based Data Loggers
Load Cell

(a) Sensor (b) Wiring

Figure 22: Load cell connections to HX711 load cell amplifier module and Arduino.

https://www.sparkfun.com/products/13329
https://www.hackster.io/MOHAN_CHANDALURU/hx711-load-cell-amplifier-interface-with-arduino-fa47f3

abu.hasan.abdullah c b n a 2019 Raspberry Pi 3 for Scientific Computing February 2019 60 / 64

“Raspberry Pi + Arduino” based Data Loggers
Speed Sensor

Figure 23: Connecting an infrared speed sensor based on the LM393 chip.

https://www.brainy-bits.com/speed-sensor-with-arduino/

abu.hasan.abdullah c b n a 2019 Raspberry Pi 3 for Scientific Computing February 2019 61 / 64

“Raspberry Pi + Arduino” based Data Loggers
Speed Sensor

Sample code
#include "TimerOne.h"
unsigned int counter=0;

int b1a = 6; // L9110 B-1A
int b1b = 9; // L9110 B-1B

void docount() // counts from the speed sensor
{

counter++; // increase +1 the counter value
}

void timerIsr()
{

Timer1.detachInterrupt(); // stop the timer
Serial.print("Motor Speed: ");
int rotation = (counter / 20); // divide by number of holes in Disc
Serial.print(rotation,DEC);
Serial.println(" Rotation per seconds");
counter=0; // reset counter to zero
Timer1.attachInterrupt(timerIsr); // enable the timer

}

void setup()
{

Serial.begin(9600);

pinMode(b1a, OUTPUT);
pinMode(b1b, OUTPUT);

Timer1.initialize(1000000); // set timer for 1sec
attachInterrupt(0, docount, RISING); // increase counter when speed sensor pin goes High
Timer1.attachInterrupt(timerIsr); // enable the timer

}

abu.hasan.abdullah c b n a 2019 Raspberry Pi 3 for Scientific Computing February 2019 62 / 64

“Raspberry Pi + Arduino” based Data Loggers
Speed Sensor

Sample code (continued)

void loop()
{

int potvalue = analogRead(1); // Potentiometer connected to Pin A1
int motorspeed = map(potvalue, 0, 680, 255, 0);
analogWrite(b1a, motorspeed); // set speed of motor (0-255)
digitalWrite(b1b, 1); // set rotation of motor to Clockwise

}

abu.hasan.abdullah c b n a 2019 Raspberry Pi 3 for Scientific Computing February 2019 63 / 64

Bibliography

1 HEITZ, R. (2016): Hello Raspberry Pi!, Manning (ISBN: 9781617292453)

2 RICHARDSON, M. & WALLACE, S. (2013): Getting Started with Raspberry Pi, O’Reilly (ISBN:
978-1-449-34421-4)

3 SOPER, M. E. (2017): Expanding Your Raspberry Pi, Apress (ISBN: 978-1-4842-2922-4)

abu.hasan.abdullah c b n a 2019 Raspberry Pi 3 for Scientific Computing February 2019 64 / 64

. . . must end

. . . and I end my presentation with two supplications

my Lord! increase me in knowledge
(TAA-HAA (20):114)

O Allah! We ask You for knowledge that is of benefit
(IBN MAJAH)

	Introduction
	Bibliography

