

(Open Source Computer Aided Engineering)

Open Source CAE for Ship Design and Analysis Introduction to OpenFOAM

Ummu Saiyidah Najihah binti Zainudin Abu Hasan Abdullah

December 2019

Outline

- 1) What is OpenFOAM?
- 2) Solver Case Architecture
- 3) Setup Case Directory Initial Field Conditions
- 4) Setup Case Directory Constant Directory
- 5) Setup Case Directory Solving Parameters Directory
- 6) Advantages of OpenFOAM
- 7) Run Simple Cases

What is OpenFOAM?

□ OpenFOAM Sofware :

- a free and open source CFD toolbox. OpenFOAM stands for Open source Field Operation And Manipulation.
- a C++ toolbox for the development of customized numerical solvers, and pre-/post-processing utilities for the solution of continuum mechanics problems, most prominently including computational fluid dynamics.

Introduction to OpenFOAM

1) Solver – Case Architecture

A case is usually composed of three directories. Each dedicated to a specific part of the case.

2) Setup case directory – Initial field conditions

Initial Field Conditions for :

- 1- alpha.water
- 2- k (turbulent kinematics energy)
- 3- nut (turbulent kinematics viscosity)
 - 4- omega
 - 5- pointDisplacement
 - 6- p_rgh
 - 7- U (speed in m/s)

3) Setup case directory – Constant directory

Physical properties values

4) Setup case directory – Solving parameters directory

Advantages of OpenFOAM software

- 1) Friendly syntax for partial differential equations.
- 2) Fully documented source code.
- 3) Unstructured polyhedral grid capabilities.
- 4) Automatic parallelization of applications written using OpenFOAM high-level syntax.
- 5) Wide range of applications and models ready to use.
- 6) Commercial support and training provided by the developers.
- 7) No license costs.

Run Simple Cases

THANK YOU