```
clear; clc;
% Example from pp52-55
% Experimental Methods, W. Bolton (1996), Elsevier
% Five measurements of time [sec] taken for 10 oscillations
%_____
% Experiment 1
times1 = [20.1 20.0 20.2 20.1 20.1];
count1 = length(times1);
% Compute the mean time
mean_times1 = mean(times1);
% Compute deviation using built-in Octave command,
% deviation_squared and tabulate the results
deviation1 = times1 - mean_times1;
deviation1_sq = deviation1.^2;
disp(" ")
disp("Experiment 1")
disp("---- ")
[times1' deviation1' deviation1_sq']
count1
mean_times1
% Compute standard deviation using built-in Octave command
std_dev1 = std(times1)
% Compute standard error for the two sets of experiments
std_err1 = std_dev1/sqrt(count1)
% Experiment 2
clear;
times2 = [19.5 \ 20.5 \ 19.7 \ 20.6 \ 20.2];
count2 = length(times2);
% Compute the mean time
mean_times2 = mean(times2);
% Compute deviation using built-in Octave command,
% deviation_squared and tabulate the results
deviation2 = times2 - mean_times2;
deviation2_sq = deviation2.^2;
disp(" ")
disp("Experiment 2")
disp("-----")
[times2' deviation2' deviation2_sq']
count.2
mean_times2
% Compute standard deviation using built-in Octave command
std_dev2 = std(times2)
% Compute standard error for the two sets of experiments
std_err2 = std_dev2/sqrt(count2)
```